52 research outputs found

    Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study

    Full text link
    Neuroinflammation is emerging as an important pathological process in frontotemporal dementia (FTD), but biomarkers are lacking. We aimed to determine the value of complement proteins, which are key components of innate immunity, as biomarkers in cerebrospinal fluid (CSF) and plasma of presymptomatic and symptomatic genetic FTD mutation carriers.We measured the complement proteins C1q and C3b in CSF by ELISAs in 224 presymptomatic and symptomatic GRN, C9orf72 or MAPT mutation carriers and non-carriers participating in the Genetic Frontotemporal Dementia Initiative (GENFI), a multicentre cohort study. Next, we used multiplex immunoassays to measure a panel of 14 complement proteins in plasma of 431 GENFI participants. We correlated complement protein levels with corresponding clinical and neuroimaging data, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP).CSF C1q and C3b, as well as plasma C2 and C3, were elevated in symptomatic mutation carriers compared to presymptomatic carriers and non-carriers. In genetic subgroup analyses, these differences remained statistically significant for C9orf72 mutation carriers. In presymptomatic carriers, several complement proteins correlated negatively with grey matter volume of FTD-related regions and positively with NfL and GFAP. In symptomatic carriers, correlations were additionally observed with disease duration and with Mini Mental State Examination and Clinical Dementia Rating scale® plus NACC Frontotemporal lobar degeneration sum of boxes scores.Elevated levels of CSF C1q and C3b, as well as plasma C2 and C3, demonstrate the presence of complement activation in the symptomatic stage of genetic FTD. Intriguingly, correlations with several disease measures in presymptomatic carriers suggest that complement protein levels might increase before symptom onset. Although the overlap between groups precludes their use as diagnostic markers, further research is needed to determine their potential to monitor dysregulation of the complement system in FTD.© 2022. The Author(s)

    A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia

    Get PDF
    Several CSF and blood biomarkers for genetic frontotemporal dementia (FTD) have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH)), synapse dysfunction (neuronal pentraxin 2 (NPTX2)), astrogliosis (glial fibrillary acidic protein (GFAP)), and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage FTD, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic FTD using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. 275 presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialised DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on prior diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF NfL, blood pNfH, blood GFAP, and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve (AUC) of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The AUC to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic FTD revealed that NPTX2 and NfL are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions

    Modeling Brain Resonance Phenomena Using a Neural Mass Model

    Get PDF
    Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect

    Biofluid Biomarkers in Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability

    On Code Linearity and Rotational Invariance for a Class of Trellis Codes for M-PSK

    No full text

    Vitamin D supplementation and neurofilament light chain in multiple sclerosis

    No full text
    OBJECTIVES: The effect of vitamin D supplementation on the disease course of multiple sclerosis (MS) is not established. Neurofilament light chain (NFL) is a sensitive marker of axonal degeneration. The aim of this study was to establish whether high-dose vitamin D supplementation reduces serum levels of NFL. MATERIALS AND METHODS: We have performed a 96 weeks placebo-controlled randomized study of weekly supplementation with 20.000 IU vitamin D3 in 71 patients with relapsing remitting MS (RRMS). Serum levels of NFL were measured at baseline, week 48 and week 96 with a single molecule (Simoa) assay in 69 of these patients. RESULTS: Serum levels of 25-hydroxyvitamin D more than doubled in the vitamin D group. Compared to placebo, vitamin D supplementation had no overall effect on the change in serum levels of NFL from baseline (p=0.93 at week 48 and p=0.56 at week 96). In the subgroup of patients not receiving disease-modifying therapy, NFL decreased by 30.9% to week 48 and 32.6% to week 96 from baseline in the vitamin D group as compared to the placebo group (p=0.06 for both time points). CONCLUSION: With a possible exception for patients not treated with disease-modifying drugs, weekly supplementation with 20.000 IU vitamin D3 did not affect NFL levels in these RRMS patients. This article is protected by copyright. All rights reserved
    corecore